top of page

_MG_7581L.jpg

3185 Introduction to Data Compressing (資料壓縮導論)

  • Course Time: Mon 09:10-12:00

  • Classroom: AT335 

  • Course Outlines: 資料壓縮導論--數位通訊逐漸的取代了早先所使用的類比通訊,一個相當高的資料量不論是傳送出去或者儲存起來,都會構成問題,所以資料壓縮是一個用來減少訊號量的程序,從本課程中讓學生能了解且學習到資料壓縮的理論及技術應用範圍。 課程綱要如下:

    • 1. Introduction;

    • 2. Lossless Compression: Huffman Coding, Arithmetic Coding , Dictionary Techniques, Predictive Coding;

    • 3. Lossy Compression: Scalar Quantization, Vector Quantization, Differential Coding; 

    • 4. Transform Coding, DCT, JPEG, Subband coding, Wavelet-based compression;

    • 5. Image Compression Standard;

    • 6. Basic Video Coding Techniques;

    • 7. Video Compression Standards;

    • 8. Basic Audio Compression Techniques;

    • 9. MPEG Audio Compression.

  • Textbook: "Introduction to Data Compression", by Khalid Sayood, 4th Edition, Academic Press. (Morgan Kaufann Publisher), 2012.

  • Lecture Notes:  DC00

  • Grade: 成績 (Updated at 2022/06/20)

  • News:

    • HW1: Problem 2.5 and 2.7

    • HW2: Problem 3.8

    • 緊急通知,因資工所有同學確診,周一會進行清消,所以本周(5/16)課程改成線上教學,網址:meet.google.com/bqf-xrxk-juw

    • 5/23 課程維持線上上課 

    • 6/13 線上考試如下,請於當日中午1200前作答完畢,請誠實作答。 https://forms.gle/q9Nx7cRAozQPyuzD7

    • ​期中考、作業與期末考等成績已公布,有疑問者,請於6/20上午0900-1200找助教,逾時不後。

    • 學期成績已公布,有疑問者,請於6/22下午1500-1600與我聯絡,逾時不後。

6638 Pattern Recognition

  • Course Time: Tue 13:10-16:00

  • Classroom: AT338

  • Course Outlines: 

    • 1.Introduction;

    • 2.Bayes Decision Theory;

    • 3.Maximum-Likelihood and Bayesian Parameter Estimation;

    • 4.Nonparametric Techniques;

    • 5.Multilayer Neural Networks;

    • 6. Deep Learning - Convolutional Neural Networks; 

    • 7. Unsupervised Learning and Clustering.

    • 8. Feature Extraction - Linear Discriminant Analysis and Principle Component Analysis;

    • 9. Deep Learning - Autoencoder; 

  • Textbook: "Pattern Classification", by Richard O. Duda, Peter E. Hart and David G. Stork, John Wiley & Sons, 2nd edition, 2001.

  • Reference Books:  

    • Introduction to Statistical Pattern Recognition, by Keinosuke Fukunaga, 2nd Edition, Academic Press, 1990.

    • Neural Networks and Learning Machines, 3rd Edition, Simon O. Haykin, McMaster University, Ontario Canada, Pearson, 2009.

    • "Artificial Intelilgence" by Leonardo Araujo dos Santos. 2018.

    • "Deep Learning", by Ian Goodfellow, Yoshua Bengio, and Aaron Courville,  MIT Press, 2016.

  • Lecture Notes:  PR00, RandomVectors, PR2a, PR2bPR06

  • Grade:  成績 (Updated at 2022/06/20)

  • News: 

    • HW1: Generate the Gaussian high dimensional dataset. (Stationary random process).

    • HW2: Design the Maximum A Posterior  (MAP) classifier for the dataset in HW1.  Half of the data are used in the training phase, and the rest is for evaluation.

    • HW3: Unsupervised clustering using Kohonen Network for the dataset in HW1.

    • 因上課同學有人確診,所以本周(5/17)課程改成線上教學,網址:meet.google.com/yea-qxth-qcs

    • Final Project: 期末報告每組3-4人,報告論文須為近3年的SCI論文,分組名單與論文題目摘要請於5/31交,題目內容須用到本課程所涵蓋的分類器(classifiers),含深度學習。6/7, 14 期末分組報告。

    • 5/31 舉行期末考試。

    • 5/24 課程維持線上上課 

    • 5/31 線上考試如下,請於當日下午1600前作答完畢,請誠實作答。 
      https://forms.gle/AEVWfwXZUoFW1RNx5

    • 作業繳交方式:內容為主要演算法與程式片斷,包含測試資料與結果,以及簡短的討論或結論等。請把書面報告電子檔,程式及相關測試資料先以Winzip或WinRAR壓縮,並以學號為其檔名,上傳到下列的FTP網站:IP:140.120.182.2, Port:1023, 帳號:PR_Student_2022, 密碼:2022PRClass

    • ​作業成績與期中考成績已公布。

    • 期中考、作業與期末考等成績已公布,有疑問者,請於6/20上午0900-1200找助教,逾時不後。

    • 期末報告、學期成績已公布,有疑問者,請於6/22下午1500-1600與我聯絡,逾時不後。

1923 Introduction to Deep Learning in Image Processing (深度學習概論與影像處理應用)

  • Course Time: August 29th, 30th, and 31th  09:10-16:00

  • Classroom: S821 (Room 821@Science Building)

  • Course Outlines:

    • 1. Introduction to Machine Learning

    • 2. Multilayer Perceptron

    • 3.Deep Convolutional Neural Networks

    • 4.Object Detection and Classification

    • 5.Deep learning on the Raspberry Pi.

  • Reference Books: 

    • [1] "Artificial Inteligence" by Leonardo Araujo dos Santos. 2018.

    • [2] "Hands-On Computer Vision with TensorFlow 2", by Benjamin Planche and Eliot Andres, Packt Publishing, 2019.

    • [3] “Neural Networks and Learning Machines” by Simon O. Haykin, 3rd Edition, 2009​

  • Grade: 

  • News: 

PReq1.png
bottom of page