

3185 Introduction to Data Compressing (資料壓縮導論)
- 
Course Time: Mon 09:10-12:00 
- 
Classroom: AT335 
- 
Course Outlines: 資料壓縮導論--數位通訊逐漸的取代了早先所使用的類比通訊,一個相當高的資料量不論是傳送出去或者儲存起來,都會構成問題,所以資料壓縮是一個用來減少訊號量的程序,從本課程中讓學生能了解且學習到資料壓縮的理論及技術應用範圍。 課程綱要如下: - 
1. Introduction; 
- 
2. Lossless Compression: Huffman Coding, Arithmetic Coding , Dictionary Techniques, Predictive Coding; 
- 
3. Lossy Compression: Scalar Quantization, Vector Quantization, Differential Coding; 
- 
4. Transform Coding, DCT, JPEG, Subband coding, Wavelet-based compression; 
- 
5. Image Compression Standard; 
- 
6. Basic Video Coding Techniques; 
- 
7. Video Compression Standards; 
- 
8. Basic Audio Compression Techniques; 
- 
9. MPEG Audio Compression. 
 
- 
- 
Textbook: "Introduction to Data Compression", by Khalid Sayood, 4th Edition, Academic Press. (Morgan Kaufann Publisher), 2012. 
- 
Lecture Notes: DC00 
- 
Grade: 成績 (Updated at 2022/06/20) 
- 
News: - 
HW1: Problem 2.5 and 2.7 
- 
HW2: Problem 3.8 
- 
緊急通知,因資工所有同學確診,周一會進行清消,所以本周(5/16)課程改成線上教學,網址:meet.google.com/bqf-xrxk-juw 
- 
5/23 課程維持線上上課 
- 
6/13 線上考試如下,請於當日中午1200前作答完畢,請誠實作答。 https://forms.gle/q9Nx7cRAozQPyuzD7 
- 
期中考、作業與期末考等成績已公布,有疑問者,請於6/20上午0900-1200找助教,逾時不後。 
- 
學期成績已公布,有疑問者,請於6/22下午1500-1600與我聯絡,逾時不後。 
 
- 
6638 Pattern Recognition
- 
Course Time: Tue 13:10-16:00 
- 
Classroom: AT338 
- 
Course Outlines: - 
1.Introduction; 
- 
2.Bayes Decision Theory; 
- 
3.Maximum-Likelihood and Bayesian Parameter Estimation; 
- 
4.Nonparametric Techniques; 
- 
5.Multilayer Neural Networks; 
- 
6. Deep Learning - Convolutional Neural Networks; 
- 
7. Unsupervised Learning and Clustering. 
- 
8. Feature Extraction - Linear Discriminant Analysis and Principle Component Analysis; 
- 
9. Deep Learning - Autoencoder; 
 
- 
- 
Textbook: "Pattern Classification", by Richard O. Duda, Peter E. Hart and David G. Stork, John Wiley & Sons, 2nd edition, 2001. 
- 
Reference Books: - 
Introduction to Statistical Pattern Recognition, by Keinosuke Fukunaga, 2nd Edition, Academic Press, 1990. 
- 
Neural Networks and Learning Machines, 3rd Edition, Simon O. Haykin, McMaster University, Ontario Canada, Pearson, 2009. 
- 
"Artificial Intelilgence" by Leonardo Araujo dos Santos. 2018. 
- 
"Deep Learning", by Ian Goodfellow, Yoshua Bengio, and Aaron Courville, MIT Press, 2016. 
 
- 
- 
Lecture Notes: PR00, RandomVectors, PR2a, PR2b, PR06 
- 
Grade: 成績 (Updated at 2022/06/20) 
- 
News: - 
HW1: Generate the Gaussian high dimensional dataset. (Stationary random process). 
 
- 
- 
- 
HW2: Design the Maximum A Posterior (MAP) classifier for the dataset in HW1. Half of the data are used in the training phase, and the rest is for evaluation. 
- 
HW3: Unsupervised clustering using Kohonen Network for the dataset in HW1. 
- 
因上課同學有人確診,所以本周(5/17)課程改成線上教學,網址:meet.google.com/yea-qxth-qcs 
- 
Final Project: 期末報告每組3-4人,報告論文須為近3年的SCI論文,分組名單與論文題目摘要請於5/31交,題目內容須用到本課程所涵蓋的分類器(classifiers),含深度學習。6/7, 14 期末分組報告。 
- 
5/31 舉行期末考試。 
- 
5/24 課程維持線上上課  
- 
5/31 線上考試如下,請於當日下午1600前作答完畢,請誠實作答。 
 https://forms.gle/AEVWfwXZUoFW1RNx5
- 
作業繳交方式:內容為主要演算法與程式片斷,包含測試資料與結果,以及簡短的討論或結論等。請把書面報告電子檔,程式及相關測試資料先以Winzip或WinRAR壓縮,並以學號為其檔名,上傳到下列的FTP網站:IP:140.120.182.2, Port:1023, 帳號:PR_Student_2022, 密碼:2022PRClass 
- 
作業成績與期中考成績已公布。 
- 
期中考、作業與期末考等成績已公布,有疑問者,請於6/20上午0900-1200找助教,逾時不後。 
- 
期末報告、學期成績已公布,有疑問者,請於6/22下午1500-1600與我聯絡,逾時不後。 
 
- 
1923 Introduction to Deep Learning in Image Processing (深度學習概論與影像處理應用)
- 
Course Time: August 29th, 30th, and 31th 09:10-16:00 
- 
Classroom: S821 (Room 821@Science Building) 
- 
Course Outlines: - 
1. Introduction to Machine Learning 
- 
2. Multilayer Perceptron 
- 
3.Deep Convolutional Neural Networks 
- 
4.Object Detection and Classification 
- 
5.Deep learning on the Raspberry Pi. 
 
- 
- 
Reference Books: - 
[1] "Artificial Inteligence" by Leonardo Araujo dos Santos. 2018. 
- 
[2] "Hands-On Computer Vision with TensorFlow 2", by Benjamin Planche and Eliot Andres, Packt Publishing, 2019. 
- 
[3] “Neural Networks and Learning Machines” by Simon O. Haykin, 3rd Edition, 2009 
 
- 
- 
Grade: 
- 
News:  
