1341 Probability (機率)
-
Course Time: Mon 09:10-12:00
-
Classroom: AT338
-
Course Outlines:
-
1. Experiments, Models and Probabilities;
-
2. Sequential Experiments;
-
3. Discrete Random Variables;
-
4. Continuous Random Variables.
-
5. Multiple Random Variables;
-
6. Probability Models of Derived Random Variables;
-
7. Conditional Probability Models;
-
8. Random Vectors;
-
9. Sums of Random Variables;
-
10. The Sample Mean;
-
11. Hypothesis Testing;
-
12. Estimation of a Random Variable;
-
13. Stochastic Processes.
-
-
Textbook: Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers ", the 3rd Edition, by Roy D. Yates and David J. Goodman (John Wiley & Sons), 2015.
-
Reference Books:
-
Introduction to Statistical Pattern Recognition, by Keinosuke Fukunaga, 2nd Edition, Academic Press, 1990.
-
Introduction to Probability and Statistics: for Engineering and the Computing Sciences, by J. Susan Milton, Jesse C. Arnold, Liu Kwong Ip, the McGraw Hill Companies.
-
R in ACTION: Data analysis and graphics with R, by Kabacoff, Robert I., Manning Publications, 2015.
-
-
Lecture Notes: Probability0
-
Grade: 成績 (Updated at 2022/1/20)
-
News:
-
10/3前的課使用Google Meet線上上課,會點名,網址為:meet.google.com/snq-rhtq-san
-
期末考,學期成績已公布,期末考成績有疑問者請於1/20前與助教聯絡,學期成績有疑問者請於1/21早上1000-1130與我聯絡,逾時不後。
-
6653&7766 Digital Image Processing (影像處理)
-
Course Time: Tue 13:10-16:00 / Mon 18:20-21:00
-
Classroom: AT336 / AT338
-
Course Outlines: This course covers fundamental concepts and methods in digital image processing and their applications. The course is outlined as:
-
1 Introduction
-
2 Digital Image Fundamentals
-
3 Intensity Transformations and Spatial Filtering
-
4 Filtering in the Frequency Domain
-
5 Image Restoration and Reconstruction
-
6 Wavelet and Other Image Transforms
-
7 Color Image Processing
-
8 Morphological Image Processing
-
9 Image Segmentation
-
10 Deep Learning
-
11 Image Classification and Object Detection with Convolutional Neural Networks.
-
-
Textbook: "Digital Image Processing", by R. C. Gonzalez and R. E. Woods, 4th Edition, Pearson (開發), 2017.
-
Reference Books: "
-
Digital Image Processing Using MATLAB", 2nd Edition, by Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins,
McGraw-Hill, 2009. -
"Artificial Intelligence" by Leonardo Araujo dos Santos. 2018.
-
"Hands-On Computer Vision with TensorFlow 2", by Benjamin Planche and Eliot Andres, Packt Publishing, 2019.
-
-
Lecture Notes: Chapter0, 關於PPT授課著作權, Chapter1, Chapter2, Chapter3, Chapter5, Chapter6, Chapter9, Chapter10, Chapter12
-
News:
-
10/3前,碩博班的課使用Google Meet線上上課,會點名,網址為: meet.google.com/rao-jsmb-duw
-
10/3前,碩專班的課使用Google Meet線上上課,會點名,網址為: meet.google.com/dvf-eiyi-eye
-
作業繳交方式:內容為主要演算法與程式片斷,包含測試資料與結果,以及簡短的討論或結論等。請把書面報告WORD電子檔,程式Source code及相關測試資料先以Winzip或WinRAR壓縮,並以學號為其檔名,上傳到FTP網站,網址資訊隨後公布。
-
作業繳交資訊:主機:140.120.182.172,連接埠:1023。碩博班:使用者名稱:ipstudent,密碼:ip2021。碩專班:使用者名稱:ipnstudent,密碼:ip2021。
-
期末考,期末報告與學期成績已公布,期末考成績有疑問者請於1/21早上1000-1130找助教,學期成績有疑問者也請同時段與我聯絡,逾時不後。
-
1923 Introduction to Deep Learning in Image Processing (深度學習概論與影像處理應用)
-
Course Time: August 24th, 25th, and 27th 09:10-16:00
-
Classroom: S821 (Room 821@Science Building)
-
Course Outlines:
-
1. Introduction to Machine Learning
-
2. Multilayer Perceptron
-
3.Deep Convolutional Neural Networks
-
4.Object Detection and Classification
-
5.Deep learning on the Raspberry Pi.
-
- Reference Books:
-
[1] "Artificial Inteligence" by Leonardo Araujo dos Santos. 2018.
-
[2] "Hands-On Computer Vision with TensorFlow 2", by Benjamin Planche and Eliot Andres, Packt Publishing, 2019.
-
[3] “Neural Networks and Learning Machines” by Simon O. Haykin, 3rd Edition, 2009
-
-
Grade: 成績 (Updated at 2022/1/13)
-
News:
1922 Data Analysis and Graphics and Machine Learning with R (R語言實務與機器學習)
-
Course Time: August 31th, September 1st and 3rd, 09:10-16:00
-
Classroom: S821 (Room 821@Science Building)
-
Course Outlines:
-
1. RStudio 開發環境的建置與介紹
-
2. 變數型態、向量運算、函數的使用
-
3. 各種資料的讀取與匯入
-
4. 直覺、吸睛的繪圖技巧
-
5. 原始資料的整併和取樣
-
6. 字串的處理與運算
-
7. 迴圈、向量等群組資料的操作
-
8. 報表、簡報和網頁呈現的技巧
-
9. 各種統計、迴歸資料模型的應用
-
10. R 軟體於機器學習與深度學習(CNN)的應用
-
-
Textbook: R 軟體 資料分析基礎與應用 (R for Everyone: Advanced Analytics and Graphics),旗標出版公司
-
Reference Books: R IN ACTION: Data analysis and graphics with R, by Kabacoff, Robert I., Manning Publications, 2015.
-
Lecture Notes: R_Summer
-
Grade: 成績 (Updated at 2022/1/14)
-
News:
-
Teaching Materials: (1) CSV sample file: Tomato, Hospital, (2) Sample code1 (2) 語言自訂函數範例
-
R 安裝機器學習套件 RTENSORFLOW, KERAS,請見:R_Keras
-
Artificial Intelligence (人工智慧,資訊科技第二專長學分班)
-
Course Time: Tue. 18:30-21:00
-
Classroom: AT336
-
Course Outlines:
-
1.Introduction to Machine Learning;
-
2. K-Nearest Neighbors;
-
3. Naive Bayesian Classification;
-
4. Decision Trees and Random Forests;
-
5. Support Vector Machines;
-
6. Neural Networks;
-
7. Unsupervised Learning and Clustering;
-
8. Deep Learning
-
-
Textbook: “初探機器學習 使用Python”, O’Reilly, 2017(碁峰) (Thoughtful Machine Learning with Python: A Test-Driven Approach 1st Edition -Matthew Kirk)
-
Reference Books:
-
“Introduction to Statistical Pattern Recognition” by Keinosuke Fukunaga, Academic Press, 2nd edition,1990.
-
“Neural Networks and Learning Machines” by Simon O. Haykin, Pearson Education, Inc., 3rd Edition, 2009.
-
“Artificial Intelligence” - Leonardo Araujo dos Santos. 2018.
-
-
Lecture Notes: AI0
-
Grade: 成績 (Updated at 2022/1/20)
-
News:
-
10/3前的課使用Google Meet線上上課,會點名,網址為:meet.google.com/ofs-uuwa-uqe
-
Machine learning Sample codes (Tensorflow 2.0)
-
期末考與學期成績成績已公布,疑問者請於1/21早上1000-1130與我聯絡,逾時不後。
-