top of page

2021APR.JPG

1341 Probability (機率)

  • Course Time: Mon 09:10-12:00

  • Classroom: AT338

  • Course Outlines: 

    • 1. Experiments, Models and Probabilities;

    • 2. Sequential Experiments;

    • 3. Discrete Random Variables;

    • 4. Continuous Random Variables.

    • 5. Multiple Random Variables;

    • 6. Probability Models of Derived Random Variables;

    • 7. Conditional Probability Models;

    • 8. Random Vectors;

    • 9. Sums of Random Variables;

    • 10. The Sample Mean;

    • 11. Hypothesis Testing;

    • 12. Estimation of a Random Variable;

    • 13. Stochastic Processes.

  • Textbook: Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers ", the 3rd Edition, by Roy D. Yates and David J. Goodman   (John Wiley & Sons), 2015.

  • Reference Books:  

    • Introduction to Statistical Pattern Recognition, by Keinosuke Fukunaga, 2nd Edition, Academic Press, 1990.

    • Introduction to Probability and Statistics:  for Engineering and the Computing Sciences,   by J. Susan Milton, Jesse C. Arnold, Liu Kwong Ip, the McGraw Hill  Companies.

    • R in ACTION: Data analysis and graphics with R, by  Kabacoff, Robert I., Manning Publications, 2015.

  • Lecture Notes: Probability0 

  • Grade:  成績  (Updated at 2022/1/20) 

  • News:

    • 10/3前的課使用Google Meet線上上課,會點名,網址為:meet.google.com/snq-rhtq-san

    • 期末考,學期成績已公布,期末考成績有疑問者請於1/20前與助教聯絡,學期成績有疑問者請於1/21早上1000-1130與我聯絡,逾時不後。

​​6653&7766 Digital Image Processing (影像處理)

  • Course Time: Tue 13:10-16:00 / Mon 18:20-21:00

  • Classroom: AT336 / AT338 

  • Course Outlines: This course covers fundamental concepts and methods in digital image processing and their applications. The course is outlined as:

    • 1 Introduction

    • 2 Digital Image Fundamentals

    • 3 Intensity Transformations and Spatial Filtering

    • 4 Filtering in the Frequency Domain

    • 5 Image Restoration and Reconstruction

    • 6 Wavelet and Other Image Transforms

    • 7 Color Image Processing

    • 8 Morphological Image Processing

    • 9 Image Segmentation

    • 10 Deep Learning

    • 11 Image Classification and Object Detection with Convolutional Neural Networks.

  • Textbook: "Digital Image Processing", by R. C. Gonzalez and R. E. Woods, 4th Edition, Pearson (開發), 2017.

  • Reference Books:  "

    • Digital Image Processing Using MATLAB", 2nd Edition, by Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, 
      McGraw-Hill, 2009.

    • "Artificial Intelligence" by Leonardo Araujo dos Santos. 2018.

    •  "Hands-On Computer Vision with TensorFlow 2", by Benjamin Planche and Eliot Andres, Packt Publishing, 2019.

  • Lecture Notes: Chapter0, 關於PPT授課著作權, Chapter1, Chapter2, Chapter3,  Chapter5, Chapter6, Chapter9, Chapter10, Chapter12

  • Grade: 碩博成績  , 碩專成績   (Updated at 2022/1/20) 

  • News:

    • 10/3前,碩博班的課使用Google Meet線上上課,會點名,網址為: meet.google.com/rao-jsmb-duw  ​​

    • 10/3前,碩專班的課使用Google Meet線上上課,會點名,網址為: meet.google.com/dvf-eiyi-eye

    • 作業繳交方式:內容為主要演算法與程式片斷,包含測試資料與結果,以及簡短的討論或結論等。請把書面報告WORD電子檔,程式Source code及相關測試資料先以Winzip或WinRAR壓縮,並以學號為其檔名,上傳到FTP網站,網址資訊隨後公布。

    • 作業繳交資訊:主機:140.120.182.172,連接埠:1023。碩博班:使用者名稱:ipstudent,密碼:ip2021。碩專班:使用者名稱:ipnstudent,密碼:ip2021。

    • 期末考,期末報告與學期成績已公布,期末考成績有疑問者請於1/21早上1000-1130找助教,學期成績有疑問者也請同時段與我聯絡,逾時不後。

1923 Introduction to Deep Learning in Image Processing (深度學習概論與影像處理應用)

  • Course Time: August 24th, 25th, and 27th  09:10-16:00

  • Classroom: S821 (Room 821@Science Building)

  • Course Outlines:

    • 1. Introduction to Machine Learning

    • 2. Multilayer Perceptron

    • 3.Deep Convolutional Neural Networks

    • 4.Object Detection and Classification

    • 5.Deep learning on the Raspberry Pi.

  • Lecture Notes:  ML, MLP, DL

  • Reference Books: 
    • [1] "Artificial Inteligence" by Leonardo Araujo dos Santos. 2018.

    • [2] "Hands-On Computer Vision with TensorFlow 2", by Benjamin Planche and Eliot Andres, Packt Publishing, 2019.

    • [3] “Neural Networks and Learning Machines” by Simon O. Haykin, 3rd Edition, 2009​

  • Grade: 成績  (Updated at 2022/1/13) 

  • News: 

 

1922  Data Analysis and Graphics and Machine Learning with R (R語言實務與機器學習)

  • Course Time: August 31th, September 1st and 3rd,  09:10-16:00

  • Classroom: S821 (Room 821@Science Building)

  • Course Outlines: 

    • 1. RStudio 開發環境的建置與介紹

    • 2. 變數型態、向量運算、函數的使用

    • 3. 各種資料的讀取與匯入

    • 4. 直覺、吸睛的繪圖技巧

    • 5. 原始資料的整併和取樣

    • 6. 字串的處理與運算

    • 7. 迴圈、向量等群組資料的操作

    • 8. 報表、簡報和網頁呈現的技巧

    • 9. 各種統計、迴歸資料模型的應用

    • 10. R 軟體於機器學習與深度學習(CNN)的應用

  • Textbook: R 軟體 資料分析基礎與應用 (R for Everyone: Advanced Analytics and Graphics),旗標出版公司

  • Reference Books:  R IN ACTION: Data analysis and graphics with R, by  Kabacoff, Robert I., Manning Publications, 2015.

  • Lecture Notes: R_Summer

  • Grade: 成績  (Updated at 2022/1/14) 

  • News:

Artificial Intelligence (人工智慧,資訊科技第二專長學分班)

  • Course Time:  Tue. 18:30-21:00

  • Classroom: AT336

  • Course Outlines: 

    • 1.Introduction to Machine Learning;

    • 2. K-Nearest Neighbors;

    • 3. Naive Bayesian Classification;

    • 4. Decision Trees and Random Forests;

    • 5. Support Vector Machines;

    • 6.  Neural Networks;

    • 7. Unsupervised Learning and Clustering;

    • 8. Deep Learning

  • Textbook: “初探機器學習 使用Python”, O’Reilly, 2017(碁峰) (Thoughtful Machine Learning with Python: A Test-Driven Approach 1st Edition -Matthew Kirk)

  • Reference Books:  

    • “Introduction to Statistical Pattern Recognition” by Keinosuke Fukunaga, Academic Press, 2nd edition,1990.

    • “Neural Networks and Learning Machines” by Simon O. Haykin, Pearson Education, Inc., 3rd Edition, 2009.

    • “Artificial Intelligence” - Leonardo Araujo dos Santos. 2018.

  • Lecture Notes:  AI0

  • Grade:  成績  (Updated at 2022/1/20) 

  • News: 

    • 10/3前的課使用Google Meet線上上課,會點名,網址為:meet.google.com/ofs-uuwa-uqe

    • Machine learning Sample codes (Tensorflow 2.0)

    • 期末考與學期成績成績已公布,疑問者請於1/21早上1000-1130與我聯絡,逾時不後。

bottom of page