

1341 Probability (機率)
- 
Course Time: Mon 09:10-12:00 
- 
Classroom: AT338 
- 
Course Outlines: - 
1. Experiments, Models and Probabilities; 
- 
2. Sequential Experiments; 
- 
3. Discrete Random Variables; 
- 
4. Continuous Random Variables. 
- 
5. Multiple Random Variables; 
- 
6. Probability Models of Derived Random Variables; 
- 
7. Conditional Probability Models; 
- 
8. Random Vectors; 
- 
9. Sums of Random Variables; 
- 
10. The Sample Mean; 
- 
11. Hypothesis Testing; 
- 
12. Estimation of a Random Variable; 
- 
13. Stochastic Processes. 
 
- 
- 
Textbook: Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers ", the 3rd Edition, by Roy D. Yates and David J. Goodman (John Wiley & Sons), 2015. 
- 
Reference Books: - 
Introduction to Statistical Pattern Recognition, by Keinosuke Fukunaga, 2nd Edition, Academic Press, 1990. 
- 
Introduction to Probability and Statistics: for Engineering and the Computing Sciences, by J. Susan Milton, Jesse C. Arnold, Liu Kwong Ip, the McGraw Hill Companies. 
- 
R in ACTION: Data analysis and graphics with R, by Kabacoff, Robert I., Manning Publications, 2015. 
 
- 
- 
Lecture Notes: Probability0 
- 
Grade: 成績 (Updated at 2022/1/20) 
- 
News: - 
10/3前的課使用Google Meet線上上課,會點名,網址為:meet.google.com/snq-rhtq-san 
- 
期末考,學期成績已公布,期末考成績有疑問者請於1/20前與助教聯絡,學期成績有疑問者請於1/21早上1000-1130與我聯絡,逾時不後。 
 
- 
6653&7766 Digital Image Processing (影像處理)
- 
Course Time: Tue 13:10-16:00 / Mon 18:20-21:00 
- 
Classroom: AT336 / AT338 
- 
Course Outlines: This course covers fundamental concepts and methods in digital image processing and their applications. The course is outlined as: - 
1 Introduction 
- 
2 Digital Image Fundamentals 
- 
3 Intensity Transformations and Spatial Filtering 
- 
4 Filtering in the Frequency Domain 
- 
5 Image Restoration and Reconstruction 
- 
6 Wavelet and Other Image Transforms 
- 
7 Color Image Processing 
- 
8 Morphological Image Processing 
- 
9 Image Segmentation 
- 
10 Deep Learning 
- 
11 Image Classification and Object Detection with Convolutional Neural Networks. 
 
- 
- 
Textbook: "Digital Image Processing", by R. C. Gonzalez and R. E. Woods, 4th Edition, Pearson (開發), 2017. 
- 
Reference Books: " - 
Digital Image Processing Using MATLAB", 2nd Edition, by Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, 
 McGraw-Hill, 2009.
- 
"Artificial Intelligence" by Leonardo Araujo dos Santos. 2018. 
- 
"Hands-On Computer Vision with TensorFlow 2", by Benjamin Planche and Eliot Andres, Packt Publishing, 2019. 
 
- 
- 
Lecture Notes: Chapter0, 關於PPT授課著作權, Chapter1, Chapter2, Chapter3, Chapter5, Chapter6, Chapter9, Chapter10, Chapter12 
- 
News: - 
10/3前,碩博班的課使用Google Meet線上上課,會點名,網址為: meet.google.com/rao-jsmb-duw  
- 
10/3前,碩專班的課使用Google Meet線上上課,會點名,網址為: meet.google.com/dvf-eiyi-eye 
- 
作業繳交方式:內容為主要演算法與程式片斷,包含測試資料與結果,以及簡短的討論或結論等。請把書面報告WORD電子檔,程式Source code及相關測試資料先以Winzip或WinRAR壓縮,並以學號為其檔名,上傳到FTP網站,網址資訊隨後公布。 
- 
作業繳交資訊:主機:140.120.182.172,連接埠:1023。碩博班:使用者名稱:ipstudent,密碼:ip2021。碩專班:使用者名稱:ipnstudent,密碼:ip2021。 
- 
期末考,期末報告與學期成績已公布,期末考成績有疑問者請於1/21早上1000-1130找助教,學期成績有疑問者也請同時段與我聯絡,逾時不後。 
 
- 
1923 Introduction to Deep Learning in Image Processing (深度學習概論與影像處理應用)
- 
Course Time: August 24th, 25th, and 27th 09:10-16:00 
- 
Classroom: S821 (Room 821@Science Building) 
- 
Course Outlines: - 
1. Introduction to Machine Learning 
- 
2. Multilayer Perceptron 
- 
3.Deep Convolutional Neural Networks 
- 
4.Object Detection and Classification 
- 
5.Deep learning on the Raspberry Pi. 
 
- 
- Reference Books: 
- 
[1] "Artificial Inteligence" by Leonardo Araujo dos Santos. 2018. 
- 
[2] "Hands-On Computer Vision with TensorFlow 2", by Benjamin Planche and Eliot Andres, Packt Publishing, 2019. 
- 
[3] “Neural Networks and Learning Machines” by Simon O. Haykin, 3rd Edition, 2009 
 
- 
- 
Grade: 成績 (Updated at 2022/1/13) 
- 
News:  
1922 Data Analysis and Graphics and Machine Learning with R (R語言實務與機器學習)
- 
Course Time: August 31th, September 1st and 3rd, 09:10-16:00 
- 
Classroom: S821 (Room 821@Science Building) 
- 
Course Outlines: - 
1. RStudio 開發環境的建置與介紹 
- 
2. 變數型態、向量運算、函數的使用 
- 
3. 各種資料的讀取與匯入 
- 
4. 直覺、吸睛的繪圖技巧 
- 
5. 原始資料的整併和取樣 
- 
6. 字串的處理與運算 
- 
7. 迴圈、向量等群組資料的操作 
- 
8. 報表、簡報和網頁呈現的技巧 
- 
9. 各種統計、迴歸資料模型的應用 
- 
10. R 軟體於機器學習與深度學習(CNN)的應用 
 
- 
- 
Textbook: R 軟體 資料分析基礎與應用 (R for Everyone: Advanced Analytics and Graphics),旗標出版公司 
- 
Reference Books: R IN ACTION: Data analysis and graphics with R, by Kabacoff, Robert I., Manning Publications, 2015. 
- 
Lecture Notes: R_Summer 
- 
Grade: 成績 (Updated at 2022/1/14) 
- 
News: - 
Teaching Materials: (1) CSV sample file: Tomato, Hospital, (2) Sample code1 (2) 語言自訂函數範例 
- 
R 安裝機器學習套件 RTENSORFLOW, KERAS,請見:R_Keras 
 
- 
Artificial Intelligence (人工智慧,資訊科技第二專長學分班)
- 
Course Time: Tue. 18:30-21:00 
- 
Classroom: AT336 
- 
Course Outlines: - 
1.Introduction to Machine Learning; 
- 
2. K-Nearest Neighbors; 
- 
3. Naive Bayesian Classification; 
- 
4. Decision Trees and Random Forests; 
- 
5. Support Vector Machines; 
- 
6. Neural Networks; 
- 
7. Unsupervised Learning and Clustering; 
- 
8. Deep Learning 
 
- 
- 
Textbook: “初探機器學習 使用Python”, O’Reilly, 2017(碁峰) (Thoughtful Machine Learning with Python: A Test-Driven Approach 1st Edition -Matthew Kirk) 
- 
Reference Books: - 
“Introduction to Statistical Pattern Recognition” by Keinosuke Fukunaga, Academic Press, 2nd edition,1990. 
- 
“Neural Networks and Learning Machines” by Simon O. Haykin, Pearson Education, Inc., 3rd Edition, 2009. 
- 
“Artificial Intelligence” - Leonardo Araujo dos Santos. 2018. 
 
- 
- 
Lecture Notes: AI0 
- 
Grade: 成績 (Updated at 2022/1/20) 
- 
News: - 
10/3前的課使用Google Meet線上上課,會點名,網址為:meet.google.com/ofs-uuwa-uqe 
- 
Machine learning Sample codes (Tensorflow 2.0) 
- 
期末考與學期成績成績已公布,疑問者請於1/21早上1000-1130與我聯絡,逾時不後。 
 
-