1341 Probability (機率)
-
Course Time: Mon 09:10-12:00
-
Classroom: AT338
-
Course Outlines:
-
1. Experiments, Models and Probabilities;
-
2. Sequential Experiments;
-
3. Discrete Random Variables;
-
4. Continuous Random Variables.
-
5. Multiple Random Variables;
-
6. Probability Models of Derived Random Variables;
-
7. Conditional Probability Models;
-
8. Random Vectors;
-
9. Sums of Random Variables;
-
10. The Sample Mean;
-
11. Hypothesis Testing;
-
12. Estimation of a Random Variable;
-
13. Stochastic Processes.
-
-
Textbook: Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers ", the 3rd Edition, by Roy D. Yates and David J. Goodman (John Wiley & Sons), 2015.
-
Reference Books:
-
Introduction to Statistical Pattern Recognition, by Keinosuke Fukunaga, 2nd Edition, Academic Press, 1990.
-
Introduction to Probability and Statistics: for Engineering and the Computing Sciences, by J. Susan Milton, Jesse C. Arnold, Liu Kwong Ip, the McGraw Hill Companies.
-
R in ACTION: Data analysis and graphics with R, by Kabacoff, Robert I., Manning Publications, 2015.
-
-
Grade: 成績 (Updated at 2021/1/13)
-
News:
-
9/14的課,因到農委會科技中心出差,暫停一次,補課時間另訂。
-
HW1: Problems 1.1.2, 1.3.1, and 1.5.7
-
HW2: R language - Quiz 2.4
-
HW3: Problems 2.1.10 and 2.2.10
-
HW4: R language - Example 3.34
-
HW5: Problems 3.2.10, 3.3.12 and 3.5.9
-
11/2 0930-1130 期中考,範圍:chapter1 ~ chapter3
-
HW6: Problems 4.6.15 and 4.7.2, R language: Simulate N=50 data with Gaussian distribution N(60,10), calculate mean, std and median.
-
12/7: Quiz, range: chapter 4.
-
12/21小考,範圍5-1 ~5-8。
-
期末考第6題題目有誤,送分。期末考與學期成績已公布,期末考成績有疑問者請於1/13下午1400-1600找助教,學期成績有疑問者也請同時段與我聯絡,逾時不後。
-
6653&7766 Digital Image Processing (影像處理)
-
Course Time: Tue 13:10-16:00 / Mon 18:20-21:00
-
Classroom: AT336 / AT338
-
Course Outlines: This course covers fundamental concepts and methods in digital image processing and their applications. The course is outlined as:
-
1 Introduction
-
2 Digital Image Fundamentals
-
3 Intensity Transformations and Spatial Filtering
-
4 Filtering in the Frequency Domain
-
5 Image Restoration and Reconstruction
-
6 Wavelet and Other Image Transforms
-
7 Color Image Processing
-
8 Morphological Image Processing
-
9 Image Segmentation
-
10 Deep Learning
-
11 Image Classification and Object Detection with Convolutional Neural Networks.
-
-
Textbook: "Digital Image Processing", by R. C. Gonzalez and R. E. Woods, 4th Edition, Pearson (開發), 2017.
-
Reference Books: "
-
Digital Image Processing Using MATLAB", 2nd Edition, by Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins,
McGraw-Hill, 2009. -
"Artificial Intelligence" by Leonardo Araujo dos Santos. 2018.
-
"Hands-On Computer Vision with TensorFlow 2", by Benjamin Planche and Eliot Andres, Packt Publishing, 2019.
-
-
Lecture Notes:Chapter0, 關於PPT授課著作權, Chapter1, Chapter2, Chapter3, Chapter5, Chapter6, Chapter9, Chapter10, Chapter12
-
Grade: 碩博成績 (Updated at 2021/1/13) ,碩專成績 (Updated at 2021/1/13)
-
News:
-
9/14 晚上在職班影像處理暫停一次,補課時間另訂。
-
9/29 課程暫停一次,補課時間另訂。
-
10/13 下午舉辦「影像辨識工作坊」。建立上課 Python 開發環境影片如下:
-
11/10 課程因到農委會開會暫停一次,11/13周五下午1310補課,地點:應科336教室。
-
作業繳交方式:內容為主要演算法與程式片斷,包含測試資料與結果,以及簡短的討論或結論等。請把書面報告WORD電子檔,程式Source code及相關測試資料先以Winzip或WinRAR壓縮,並以學號為其檔名,上傳到FTP網站,網址資訊隨後公布。
-
期末報告,每組報告一篇近五年SCIE期刊論文,報告時間為15分鐘(含QA)。(碩博班3-4人一組,碩專班1-2人一組)。碩博期末報告:12/22, 29;碩專期末報告:12/21, 28。
-
期末筆試,碩博:1/5,碩專:1/4
-
作業繳交資訊:主機:140.120.182.145,連接埠:1023。碩博班:使用者名稱:ipstudent,密碼:ip20。碩專班:使用者名稱:ipstudentn,密碼:ip20。
-
HW3: Morphology: Boundary extraction and Region Filling.
-
HW4: Use a CNN-based neural network to classify the scene is indoors or outdoors. 影像上傳網址如下:FTP IP: 140.120.182.22,user: ipstudent,password: ip2020,port: 1023
-
期末考,期末報告與學期成績已公布,期末考與作業成績有疑問者請於1/13下午1400-1600找助教,學期成績有疑問者也請同時段與我聯絡,逾時不後。
-
4505 Information Management (資訊管理)
-
Course Time: Tue 18:20-20:05
-
Classroom: L216 (水保系2F 計中第一PC教室)
-
Course Outlines: 本課程資訊系統的理論與實務,讓同學瞭解管理資訊系統理論在實務面之應用。課程大綱如下:
-
1. 資訊系統簡介
-
2. 企業流程再造
-
3. 資訊系統分析與設計
-
4. 專案管理
-
5. 企業資源規劃
-
6. 供應鏈管理
-
7. 客戶關係管理
-
8. 電子資料交換系統
-
9. 決策支援
-
10. 資料探勷
-
11. 電子商務
-
12. 雲端運算
-
13. 資料庫管理
-
14. 網路管理
-
15. 資訊安全
-
16. 大數據-Big Data
-
17. 物聯網
-
-
Textbook: 資訊管理概論(第三版), 陳瑞順, 全華圖書出版, 出版日期:2015/09/1
-
Grade: 成績 (Updated at 2021/1/11)
-
News:
-
HW1: 何謂UML,請舉圖例說明。
-
9/29 課程暫停一次,補課時間另訂。
-
HW2 : 資訊系統應用的個案分析。
-
10/27: 小考關聯式資料庫。
-
11/3 期中考
-
12/1 小考
-
期末報告,每組1-2人。題目:資訊系統於企業的實際應用與個案分析探討,每組口頭報告時間為15分鐘(含QA)。每組須繳交一份至少5頁的期末書面報告,內容須包含:產業概況、個案背景、資訊系統導入過程、資訊系統導入後的優勢或相關問題討論,結論與心得。報告日期:12/29。
-
1/5 期末考
-
期末考,期末報告與學期成績已公布,期末考成績有疑問者請於1/13下午1400-1600找助教,學期成績有疑問者也請同時段與我聯絡,逾時不後。
-
1923 Introduction to Deep Learning in Image Processing (深度學習概論與影像處理應用)
-
Course Time: August 24th, 25th, and 27th 09:10-16:00
-
Classroom: S821 (Room 821@Science Building)
-
Course Outlines:
-
1. Introduction to Machine Learning
-
2. Multilayer Perceptron
-
3.Deep Convolutional Neural Networks
-
4.Object Detection and Classification
-
5.Deep learning on the Raspberry Pi.
-
- Reference Books:
-
[1] "Artificial Inteligence" by Leonardo Araujo dos Santos. 2018.
-
[2] "Hands-On Computer Vision with TensorFlow 2", by Benjamin Planche and Eliot Andres, Packt Publishing, 2019.
-
[3] “Neural Networks and Learning Machines” by Simon O. Haykin, 3rd Edition, 2009
-
-
Grade: 成績 (Updated at 2020/12/27)
-
News:
2273 Data Analysis and Graphics and Machine Learning with R (R語言實務與機器學習)
-
Course Time: August 31th, September 1st and 3rd, 09:10-16:00
-
Classroom: S821 (Room 821@Science Building)
-
Course Outlines:
-
1. RStudio 開發環境的建置與介紹
-
2. 變數型態、向量運算、函數的使用
-
3. 各種資料的讀取與匯入
-
4. 直覺、吸睛的繪圖技巧
-
5. 原始資料的整併和取樣
-
6. 字串的處理與運算
-
7. 迴圈、向量等群組資料的操作
-
8. 報表、簡報和網頁呈現的技巧
-
9. 各種統計、迴歸資料模型的應用
-
10. R 軟體於機器學習與深度學習(CNN)的應用
-
-
Textbook: R 軟體 資料分析基礎與應用 (R for Everyone: Advanced Analytics and Graphics),旗標出版公司
-
Reference Books: R IN ACTION: Data analysis and graphics with R, by Kabacoff, Robert I., Manning Publications, 2015.
-
Lecture Notes: R_Summer
-
Grade: 成績 (Updated at 2020/12/27)
-
News:
-
Teaching Materials: (1) CSV sample file: Tomato, Hospital, (2) Sample code1 (2) 語言自訂函數範例
-
R 安裝機器學習套件 RTENSORFLOW, KERAS,請見:R_Keras
-