top of page

_MG_8200.jpg

1341 Probability (機率)

  • Course Time: Mon 09:10-12:00

  • Classroom: AT338

  • Course Outlines: 

    • 1. Experiments, Models and Probabilities;

    • 2. Sequential Experiments;

    • 3. Discrete Random Variables;

    • 4. Continuous Random Variables.

    • 5. Multiple Random Variables;

    • 6. Probability Models of Derived Random Variables;

    • 7. Conditional Probability Models;

    • 8. Random Vectors;

    • 9. Sums of Random Variables;

    • 10. The Sample Mean;

    • 11. Hypothesis Testing;

    • 12. Estimation of a Random Variable;

    • 13. Stochastic Processes.

  • Textbook: Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers ", the 3rd Edition, by Roy D. Yates and David J. Goodman   (John Wiley & Sons), 2015.

  • Reference Books:  

    • Introduction to Statistical Pattern Recognition, by Keinosuke Fukunaga, 2nd Edition, Academic Press, 1990.

    • Introduction to Probability and Statistics:  for Engineering and the Computing Sciences,   by J. Susan Milton, Jesse C. Arnold, Liu Kwong Ip, the McGraw Hill  Companies.

    • R in ACTION: Data analysis and graphics with R, by  Kabacoff, Robert I., Manning Publications, 2015.

  • Lecture Notes: Probability0 

  • Grade:

  • News:

    • ​HW1: R Programming for Quiz 1.6.

    • HW2: Problems: 1.1.2, 1.3.1 and 1.5.7.

    • ​HW3: R Programming for Quiz 2.4.

    • HW4: Problems: 2.1.10, 2.2.10 and 2.2.12.

    • HW5: R Programming for Example 3.34.

    • HW6: Problems: 3.2.10, 3.3.13 and 3.5.10.

    • 期中考時間:11/3  0930-1200 ,範圍:chapter1 ~ chapter3

​​6653&7766 Digital Image Processing (影像處理)

  • Course Time: Tue 13:10-16:00 / Mon 18:20-21:00

  • Classroom: AT336 / AT338 

  • Course Outlines: This course covers fundamental concepts and methods in digital image processing and their applications. The course is outlined as:

    • 1 Introduction

    • 2 Digital Image Fundamentals

    • 3 Intensity Transformations and Spatial Filtering

    • 4 Filtering in the Frequency Domain

    • 5 Image Restoration and Reconstruction

    • 6 Wavelet and Other Image Transforms

    • 7 Color Image Processing

    • 8 Morphological Image Processing

    • 9 Image Segmentation

    • 10 Deep Learning

    • 11 Image Classification and Object Detection with Convolutional Neural Networks.

  • Textbook: "Digital Image Processing", by R. C. Gonzalez and R. E. Woods, 4th Edition, Pearson (開發), 2017.

  • Reference Books:  "

    • Digital Image Processing Using MATLAB", 2nd Edition, by Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, 
      McGraw-Hill, 2009.

    • "Artificial Intelligence" by Leonardo Araujo dos Santos. 2018.

    •  "Hands-On Computer Vision with TensorFlow 2", by Benjamin Planche and Eliot Andres, Packt Publishing, 2019.

  • Lecture Notes: Chapter0, 關於PPT授課著作權, Chapter1, Chapter2, Chapter3,  Chapter5, Chapter6, Chapter9, Chapter10, Chapter12

  • Grade: 

  • News:

    • HW1: Please write a programming assignment that generates the artifacts caused by insufficient sampling and quantization during digital image creation—specifically Moiré patterns and false contours. You may use either grayscale or true-color images.​

    • 10/7因到台北參加2025國家新創獎複審會議,課程暫停一次。

    • HW2: Please write a programming assignment to implement logical AND operation and union operation between two images."

    • HW3: Please write a programming assignment to implement perspective transformation using an 8-parameter spatial transformation model.

    • 作業繳交方式:內容為主要演算法與程式片斷,包含測試資料與結果,以及簡短的討論或結論等。請把書面報告WORD電子檔,程式Source code及相關測試資料先以Winzip或WinRAR壓縮,並以學號為其檔名,上傳到以下FTP網站:主機IP: 140.120.182.208,Port: 2025,碩博班:使用者名稱:DIP2025_student,密碼:DIP2025;碩專班:使用者名稱:DIP2025_student_1ABC,密碼:DIP2025_1ABC

    • 期末報告,每組報告一篇近五年SCIE期刊論文,報告時間為15分鐘(含QA),分組方式上課時說明。

    • HW4: Please write a programming assignment to implement image sharpening techniques based on the Laplacian operator and gradient-based masks. The gradient and the convolution operation should be implemented manually, including appropriate zero-padding. The use of built-in convolution APIs is not permitted.

siplab.png

Signal and Image Processing Lab

National Chung Hsing University

Copyright © 2025 by Jiunn-Lin Wu. Created with Wix.com

  • Facebook Clean Grey
  • Twitter Clean Grey
  • LinkedIn Clean Grey
bottom of page