![](https://static.wixstatic.com/media/98e04ee03335423bb5a47bd2f377df2e.png/v1/fill/w_1920,h_1080,al_c,q_95,usm_0.66_1.00_0.01,enc_avif,quality_auto/98e04ee03335423bb5a47bd2f377df2e.png)
![_MG_4271s.JPG](https://static.wixstatic.com/media/33750e_00fc9852b4f444f4ac9b497998db8369~mv2.jpg/v1/fill/w_980,h_653,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/_MG_4271s_JPG.jpg)
6638 Digital Image Processing (影像處理)
-
Course Time: Tue 13:10-16:00
-
Classroom: AT338
-
Course Outlines: This course covers fundamental concepts and methods in digital image processing and their applications. The course is outlined as:
-
1 Introduction
-
2 Digital Image Fundamentals
-
3 Intensity Transformations and Spatial Filtering
-
4 Filtering in the Frequency Domain
-
5 Image Restoration and Reconstruction
-
6 Wavelet and Other Image Transforms
-
7 Color Image Processing
-
8 Morphological Image Processing
-
9 Image Segmentation
-
10 Deep Learning
-
11 Image Classification and Object Detection with Convolutional Neural Networks.
-
-
Textbook: "Digital Image Processing", by R. C. Gonzalez and R. E. Woods, 4th Edition, Pearson (開發), 2017.
-
Reference Books: "
-
Digital Image Processing Using MATLAB", 2nd Edition, by Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins,
McGraw-Hill, 2009. -
"Artificial Intelligence" by Leonardo Araujo dos Santos. 2018.
-
"Hands-On Computer Vision with TensorFlow 2", by Benjamin Planche and Eliot Andres, Packt Publishing, 2019.
-
-
Lecture Notes: Chapter0, 關於PPT授課著作權, Chapter1, Chapter2, Chapter3, Chapter5, Chapter6, Chapter9, Chapter10, Chapter12
-
Grade: 成績 (Updated at 06/24)
-
News:
-
作業繳交方式:內容為主要演算法與程式片斷,包含測試資料與結果,以及簡短的討論或結論等。請把書面報告WORD電子檔,程式Source code及相關測試資料先以Winzip或WinRAR壓縮,並以學號為其檔名,上傳到以下FTP網站:主機:140.120.182.220,使用者名稱:dipstudent,密碼:dip2024,連接埠:21。
-
期末筆試:6/11
-
期末報告,每組報告一篇近五年SCIE期刊論文,報告時間為15分鐘(含QA)。(碩博班3-4人一組)。報告日期:6/4, 6/18。
-
作業成績已公布
-
學期成績已公布,期末考與作業成績有疑問者請於6/24下午1400-1600找助教,學期成績有疑問者請於6/25早上0800-1000與我聯絡,逾時不後。
-
1391 Medical Image Analysis (醫學影像分析)
-
Course Time: Thu 13:10-15:00
-
Classroom: IA724
-
Course Outlines: This course covers fundamental concepts and methods in digital image processing and their applications. The course is outlined as:
-
Introduction
-
Digital Image Fundamentals
-
Intensity Transformations and Spatial Filtering
-
Image Segmentation I: Edge Detection, Thresholding, and Region Detection
-
Image Segmentation II: Active Contours: Snakes and Level Sets
-
Feature Extraction
-
Image Pattern Classification
-
Introduction to Deep Learning
-
Unet Architecture
-
Medical image analysis with Deep learning
-
-
Textbook: "Digital Image Processing", by R. C. Gonzalez and R. E. Woods, 4th Edition, Pearson (開發), 2017.
-
Reference Books: "
-
“Deep Learning in Medical Image Analysis, Challenges and Applications” by Gobert Lee and HiroshiFujita, Springer, 2020.
-
“Deep Learning for Medical Image Analysis” by S. Kevin Zhou, Hayit Greenspan, Dinggang Shen, Elsevier Inc., 2017.
-
”Digital Image Processing Using MATLAB”, R. C. Gonzalez and R. E. Woods, 2nd Edition, Prentice Hall, 2011.
-
”Artificial Inteligence” by Leonardo Araujo dos Santos. 2018.
-
”Hands-On Computer Vision with TensorFlow 2”, by Benjamin Planche and Eliot Andres, Packt Publishing, 2019.
-
-
Grade:
-
成績 (Updated at 06/17)
-
-
News:
1382 智慧醫療專題轉譯研究
-
Course Time: Thu 15:10-17:00
-
Classroom: IA722
-
News:
1927 深度學習概論與電腦視覺應用